
Metadaten-Ausgabennummer: 

We Are  
Developers!

Summer – 2/2023

> WEB 
 FRAMEWORK 

Newcomer Astro  
Takes Off

> RUST  
 INTRODUCTION

A Modern Programming  
Language

> PLATFORM  
 ENGINEERING

Creating a Decentralized 
Developer Platform

Powered by

A Special Issue by  
Heise Medien GmbH & Co. KG

Template-Version:  
10-CC2021

2315312583657715874.idd   1 02.06.2023   14:59:18



ib0223_000_mit_Anz.indd   2 01.06.23   07:37



EDITORIAL
A World of Decisions 

Dear reader,

Every day we make a sheer infinite number of decisions—from 
the tiniest and seemingly most inconsequential to large life 
decisions. In the tech world, no different than in other areas, 
the trends are measured regularly, and the results can  
provide some guidance. There are countless studies that claim 
to have found "the most popular JavaScript framework" or 
"the most popular programming language" of the month or 
the year. Though the methods are often debatable, there are 
certain names that tend to show up regularly. As every  
decision may open up a whole new world, it is up to you to 
choose which of the trending topics to dive into. This mag-
azine highlights two popular candidates, but also looks at the 
bigger picture and proposes a new way of software delivery.

In line with the need for an ever higher performance, Astro 
is a new web framework designed for speed. This year, it  
reached its second major version and seems to have a  
promising future in the vast array of emerging web frame-
works. The makers of the annual study "JavaScript Rising 
Stars" recognized this as early as January 2022, when they 
declared Astro one of the most notable projects of the  
previous year. In this issue, Timo Zander provides a tutorial 
for creating a blog with Astro that showcases some of the  
framework's defining features. While several programming 
languages have been around for decades—such as C or C++—, 
modern languages set out to address some of their short-
comings. Rust has been the winner of the annual "Stack  
Overflow Developer Survey" for seven years in a row. It  
incorporates ideas of C and C++ while combining them with 
a modern syntax. As Stefan Baumgartner demonstrates in 
his introduction for curious developers, Rust lays its focus on 
memory safety while maintaining a good developer expe-
rience. And lastly, Robert Hoffmann addresses the topic of 
platform engineering: What are 
the benefits of an internal devel-
oper platform and how can it in-
crease flexibility in delivering 
software?

I hope you enjoy reading this  
issue and making decisions,

Maika Möbus

CONTENTS

4 Tutorial: Building Fast  
 Websites With Astro

14 Rust for Curious
 Developers

20 Running With a  
 Decentralized Developer  
 Platform

Metadaten-Rubrik: Editorial
Rubriken

Metadaten-Ausgabennummer: 2
Metadaten-Ausgabejahr: 2023
Metadaten-Ausgabennummer: 

Young Professionals Write  
for Young Professionals
This journal is based on a series of articles published by Heise 
Online, where we provide a platform for young professionals to 
publish their first professional articles. The journal is released  
in German language in a six-monthly rhythm, and appears in  
English once a year. For writing, the authors receive mentoring 
from the Heise Developer editorial team. The series is also  
intended to encour age young people to develop their talent as 
authors; for example, to share important experiences with your 
peers or to present an own project you are engaged in. Or  
simply because you have always wanted to write a technical  
article, preferably in German.

Your First Professional Article for Heise
Contact: developer@heise.de

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 2023

2315312572012047820.idd   3 02.06.2023   14:57:44



E ver since JavaScript applications have not only taken 
over the web but—thanks to Electron—also power 
many of the most popular desktop applications, their 

performance has gained a more prominent focus among 
devel opers. In an attempt to solve performance pitfalls,  
Astro emerged in 2022 and was able to gain attention among 
the sea of competitors due to its fresh ideas and new  
concepts. Especially when using popular front-end frame-
works like React, Vue or Svelte, it becomes a challenge to im-
plement highly responsive webpages. Visitors of JavaScript-
heavy pages have had to develop a certain tolerance against 
sluggish behavior and long loading times. This issue is home-
baked, as offloading all rendering onto the client’s device re-
moves control over the application's performance and can 
poten tially lead to an unexpectedly high “time to interactive.”

The architecture of such applications is called Single Page 
App (SPA), meaning that the browser effectively only loads 
a single HTML file, from which point the JavaScript code takes 
over. Even with server-side rendering, the browser often still 
fetches the pre-rendered parts of markup using client-side 
JavaScript code. Compared to more traditional Multi Page 
Apps (MPA) that were prominently used in the era of techno-
logies like PHP or ASP.NET, SPAs will always come with a per-
formance trade-off.

Many rendering frameworks aim to improve that: Popular 
choices like Next.js or Nuxt not only help to build a robust, 
large-scale app using their respective front-end frameworks. 
They also provide a way to pre-render pages on a server. Yet, 
server-side rendering features were not the core reason why 
those frameworks were built and rather organically devel-
oped to become one of their selling points. The JavaScript 
rendering framework Astro, on the other hand, is built with a 
dedicated focus on performance.

Astro targets content-heavy use cases. Blogs, online mag-
azines and the like rarely need heavy client-side JavaScript 
and can rather purely rely on the server to do the legwork. 
However, web developers are used to the ease and comfort 
that comes with JavaScript development. Not only the avail-
ability of high-quality tools and IDEs, but also features like 
Hot Module Replacement can drastically speed up the  
de veloper’s workflow. Therefore, going back to traditionally  
server-side heavy technologies may not be feasible.

Performance Baked In

Astro aims to reduce the amount of JavaScript code that the 
client receives as much as possible. Therefore, all content is 
pre-rendered, either during runtime on a server or during the 
build. Especially the latter option can heavily decrease the 
cost. Hosting static HTML pages has also become very inex-
pensive and can therefore cut infrastructure costs. In an age 
of surging cloud bills, this can present a significant advantage.

Nonetheless, using interactive elements within Astro is 
possible. Its concept of so-called “islands” effectively breaks 
up the web page into isolated pieces of the user interface. 
This allows the majority of the webpage to be pre-rendered 
and ready to use, even though some pieces might still need 
the client to first evaluate some JavaScript. Astro Islands are 
an opt-in feature: If a developer does not ac tively decide that 
a certain piece of the website needs to be rendered on the 
client side, it is assumed to be static. This is supposed to  
reduce cognitive overload and prevent accidental perfor-
mance traps, which front-end frameworks are prone to due 
to their Virtual DOM and re-rendering strategies that can  
become obscure with complex data flows.

Since Astro is framework-agnostic, its interactive islands 
can be implemented in any front-end JavaScript framework 
(or plain JavaScript). Additionally, even the pre-rendered con-
tent does not require any Astro-specific technology. Devel-
opers can implement it in popular choices like React, Vue, or 

Metadaten-Schlagwort: Web Framework
Metadaten-Rubrik: Praxis
Praxis

Metadaten-Ausgabennummer: 2
Metadaten-Ausgabejahr: 2023
Metadaten-Ausgabennummer: 

In a Nutshell
 > Applications built with popular front-end frameworks like 
React or Vue can suffer from long loading times due to 
client-side rendering.

 > Designed with performance in mind, the newcomer  
Astro aims to solve this by using an innovative architecture, 
allowing for dynamic content on an otherwise static page.
 > This tutorial shows how to create an Astro project  
from scratch and highlights new features in Astro 2.0.

The JavaScript rendering framework 
Astro is one of the stars of 2022’s  
State of JavaScript survey. Its focus  
on static content makes it much more 
than just another framework.  
A practical hands-on.

Timo Zander

> Building Fast  
Websites With Astro

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 20234

2315312574524313862.idd   4 02.06.2023   14:58:09



Svelte. The Astro Compiler then translates it into HTML, so 
that the client’s browser never receives any of this techno-
logical backbone for static content.

Setting Up a New Astro Project

Trying out the framework does not require much setup:  
Astro offers an online sandbox to quickly prototype a new 
application (all sources for this article can be found here: 
 ix.de/zwet). For creating a new Astro project, developers can 
use a JavaScript package manager of their choice (Figure 1).

The CLI then guides them through all the steps needed for 
project creation: Location, the template, and whether to  
immediately install all dependencies. Note that TypeScript is 
the default for Astro, as all of the framework’s features are 
fully typed. The shown example follows the recommended de-
fault settings. In the end, Astro reports the successful cre ation 
of the new project (Figure 2). When starting the development 
server, Astro displays a welcome page that provides several 
links to the documentation. The framework defaults to a spe-
cific directory structure: The src folder contains all source code 
which will be pro cessed and compiled by Astro, while the  
public directory includes static files that Astro should not alter. 
Typically, these static files are images or a favicon (Figure 3). 
Within the source folder, Astro provides components, layouts, 
and pages. They are the building blocks of any Astro project.

Components are reminiscent of their counterparts of the 
same name in front-end frameworks like React. These small 
parts of a website, like a button or an input box, are typically 
reused throughout different pages. Layouts are a way to create 
a basic skeleton for your website: The content is usually  

wrapped in a chosen layout, which contains the basic HTML  
markup like the DOCTYPE, head and body. However, layouts are 
technically fully equivalent to components. Splitting them 
into separate folders is more of a conventional choice than a 
technological one. The folder titled pages is at the heart of 
the page: It contains the actual content of the website that 
can be accessed later. Therefore, the webpage has no  
content if this folder is empty. The routing is also based  
on the file structure  
within this directory. For 
ex ample, accessing the 
page under /blog/hello-
world will cause Astro to 
look for a file located at src/
pages/blog/hello-world.

>> Astro offers a CLI to create a new project which can be 
used with any JavaScript package manager (Figure 1).

>> Astro successfully initialized the project and can now 
be used (Figure 2).

>> The standard struc-
ture of a newly created 

Astro project (Figure 3).

Template-Version:  
10-CC2021

5We Are Developers ǀ Summer 2023

2315312574524313862.idd   5 02.06.2023   14:58:09

ib0223_000_mit_Anz.indd   5 05.06.23   10:27



Learning by Doing:  
Creating a Personal Blog

To demonstrate some of Astro’s most important features, the 
following example will show how to create a new personal 
blog using Astro as its backbone. For that, Astro provides many 
themes which facilitate the initial setup and provide some 
basic styling options. This example uses Astro’s official blog 
theme, but there are also many community-made themes that 
often already come with an integrated UI framework.

Starting a freshly created project using the blog theme  
(Figure 4), results in a very minimal blog, including naviga-
tion, a footer and some text. Looking at the contents of the 
pages folder gives a good overview of the template’s ingre-
dients. Specifically, the index.astro file illustrates how .astro 
files are structured (Listing 1). They consist of a JavaScript 
header and a mixed HTML and JavaScript template.

The HTML markup is mostly standard. However, devel-
opers can use JavaScript expressions similar to the JSX  
syntax popularized by React. For example, the variable 
SITE_TITLE is passed as a property to the custom com-
ponent BaseHead. This component is responsible for  
setting all important head attributes (Listing 2). Besides set-
ting the title and description, it also creates Open Graph tags 
that are used by social media websites to create a preview 
of the page. Astro’s TypeScript integration works out of the 
box: The framework detects the interface titled Props and 
will use this to type the properties that the component can 
receive. Moreover, the JavaScript code, rather than the HTML 
markup, imports the CSS stylesheet. While in this simple 
case, both methods are equivalent, when using CSS prepro-
cessors like Sass or frameworks like Tailwind CSS, impor ting 

stylesheets within the JavaScript code allows Astro to  
pre-process and compile them. When stylesheets are ref-
erenced using link-Tags, Astro treats them as static.

The about.md file reveals one of the major features of  
Astro. It consists of plain Markdown text with an extra header 
using the Frontmatter syntax. The header always offers the 
two attributes layout and title: They set the page’s lay-
out component and title, respectively. In the example,  
the About page will reuse the layout for blog posts. After 
specifying this, it becomes possible to fill out the layout 
component's properties. Because of Astro’s TypeScript  
support, most IDEs will suggest the properties that are  
allowed. If the corresponding integration is installed, Astro 
also supports MDX—the Markdown superset that enables 
the use of JavaScript expressions and components within 
Markdown.

Organization Through  
Content Collections

The actual blog posts are located in a content collection, 
one of the new features that Astro 2.0 introduced in January 
2023. It allows grouping structurally similar content  
within collections (e.g. blog posts, newsletters, or podcast 
episodes) to then more easily generate a static page for 
each. Located under src/content, each collection has its own 

>> Creating a new Astro project can be done using a  
template (or theme) (Figure 4).

Listing 1: The index.astro file

---
import BaseHead from '../components/BaseHead.astro';
import Header from '../components/Header.astro';
import Footer from '../components/Footer.astro';
import { SITE_TITLE, SITE_DESCRIPTION } from '../consts';
---

<!DOCTYPE html>
<html lang="en">
 <head>
  <BaseHead title={SITE_TITLE} description={SITE_DESCRIPTION} />
 </head>
 <body>
  <Header title={SITE_TITLE} />
  <main>
   <h1>Hello, Astronaut!</h1>
  </main>
  <Footer />
 </body>
</html> 
 

Listing 2: Astro component to set header attributes

---
// Import the global.css file here so that it is included on
// all pages through the use of the <BaseHead /> component.
import '../styles/global.css';

export interface Props {
 title: string;
 description: string;
 image?: string;
}

const { title, description, image = '/placeholder-social.jpg' } = Astro.props;
---
<!-- ... -->

<!-- Primary Meta Tags -->
<title>{title}</title>
<meta name="title" content={title} />
<meta name="description" content={description} />

<!-- ... --> 

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 20236

WEB FRAMEWORK

2315312574524313862.idd   6 02.06.2023   14:58:09



ib0223_000_mit_Anz.indd   7 01.06.23   07:37



directory. Additionally, subdirectories within a content  
collection offer the option to further structure the data. For 
example, subfolders can provide a way to easily deal with 
multi-language content. While creating such a content  
collection is already achieved by simply creating a  
new directory, the src/content/config.ts file is highly recom-
mend ed to enable some of the optional features, such as  
type safety and validation. Both are powered by Zod, the 
TypeScript schema validation library that has grown to  
become one of the most popular libraries according to the 
current State of JavaScript survey (all links are available 
here: ix.de/zwet). In this article's example, all blog posts 
are contained within one such content collection. The de-
fineCollection() function allows developers to create 
as many different collections as they choose. Exporting the 
collections as a key-value pair tells Astro in which directory 
to look for the specified types. In the given example, the 
blog posts all come with a mandatory title and description. 
The publication date shows the expressive syntax of Zod: 
This parameter must be specified as a JavaScript date or as 
a string, which will then be transformed into a date. Simi-
larly, the date of the last update, updatedDate, is an  
optional string that will be parsed into a date. Due to Zod’s 
rich features, the control over the content collection’s type 
covers nearly all edge cases.

The user then writes the actual entries of a content  
collection as Markdown or MDX files. Their headers specify 
the required properties in the typical Frontmatter syntax, 
while their bodies can contain any type of desired content. 
What is special about this feature is that the entries will not 
be automatically displayed or generated into pages. Instead, 

Astro provides a rich API to retrieve a collection's content 
and transform it into various output options, like HTML lists, 
grid tiles, slideshow entries, and more. Therefore, content 
collections could also contain email templates or social me-
dia posts that should not become a static HTML page but are 
instead used via another channel, such as an API. In this 
example, the blog posts should be listed under the Blog menu 
point and lead to generated HTML pages where the content 
can be read (Listing 3). Using one of Astro’s APIs for content 
querying, getCollection(), all blog posts are listed. Note 
that this code is fully executed during compile time: The  
final webpage will only contain static links to pre-generated, 
plain HTML files. Again, thanks to TypeScript, the IDE even 
provides auto-completion for the existing collection names. 
The resulting array can be used like any other JavaScript  
array and does not carry any inherent special features. It is 
merely an array of plain objects.

File-based Routing:  
Balance of Simplicity and Versatility

Astro supports dynamic routing, meaning that any blog post 
is accessible via its slug in the URL, such as /blog/my-first-
post. This type of readable URLs is regarded to be more  
fa vorable for search engines and users alike. Since routing 
is based on the file system structure, Astro makes use of  

Listing 3: Transforming content collections into HTML

---
import { getCollection } from 'astro:content';

const posts = (await getCollection('blog')).sort(
  (a, b) => a.data.pubDate.valueOf() - b.data.pubDate.valueOf()
);
---
<ul>
  {
    posts.map((post) => (
      <li>
        <time datetime={post.data.pubDate.toISOString()}>
          {post.data.pubDate.toLocaleDateString('en-us', {
            year: 'numeric',
            month: 'short',
            day: 'numeric',
          })}
        </time>
        <a href={`/blog/${post.slug}/`}>{post.data.title}</a>
      </li>
    ))
  }
</ul> 
 

Listing 4: Demonstration of dynamic routing

Nested route is matched:
/src/pages/articles/[…slug].astro -> /articles/this/is/a/post ✓

Route is not matched:
/src/pages/articles/[slug].astro -> /articles/this/is/a/post ❌ 
 

Listing 5: Example of a getStaticPaths() implementation

---
export async function getStaticPaths() {
 const posts = await getCollection('blog');
 return posts.map((post) => ({
  params: { slug: post.slug },
  props: post,
 }));
}
type Props = CollectionEntry<'blog'>;

const post = Astro.props;
const { Content } = await post.render();
---

<BlogPost {...post.data}>
 <h1>{post.data.title}</h1>
 <Content />
</BlogPost> 
 

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 20238

WEB FRAMEWORK

2315312574524313862.idd   8 02.06.2023   14:58:09



ib0223_000_mit_Anz.indd   9 01.06.23   07:38



the heise Developer RSS feed to load and list the five  
latest articles on the front page. This requires a change in 
the src/pages/index.astro file (Listing 6). Since JavaScript’s  
built-in capabilities to parse XML files are limited to the 
browser environment, the rss-parser package will come into 
play. Alternatively, other DOM parsers like jsdom would also 
work. The benefit of the RSS-specific package is that it  
nicely converts the data to typed objects, making it easier 
to work with them. It is important to remember that the 
JavaScript code is fully executed during build time. Adding 
a console.log() statement will not show up in the  
browser’s console but instead in the terminal that runs the 
dev command. Moreover, the framework allows for top-level 
awaits. This means that the global context is execut ed  
as an async function, enabling the usage of the await  
keyword. Again, this is not affecting the user but only the 
build tool, meaning that the Astro build could be slowed 
down if high-latency resources are fetched. Listing the  
fetched links as an unordered list is done using the JSX  
syntax. Due to the type safety of the RSS library, parsing the 
publication date requires an extra check: If the pubDate 
field is unde fined, the time will not be rendered. In practice, 
data might be fetched from a CMS, an API or a combination 

of many data sources. Therefore, Astro proves flexible  
to adapt to any given environment. The documentation  
provides a guide for the most common Content Manage-
ment System (CMS) software options and how to integrate 
them with Astro. There are specific integration packages 
available for some that ease consuming the API of the CMS.

Generating Endpoints  
From Scratch

File-based routing not only supports dynamic HTML files, but 
also so-called endpoints. An endpoint can be any resource 
accessible from a web server, such as JSON files, XML site-
maps, images or assets of any kind. Adding the .js or .ts file 
ending to the desired name of the generated output will create 
an endpoint. For example, to generate an asset called  
sitemap.xml, the file src/pages/sitemap.xml.ts will be  
executed. Such files must export a get() function that  
returns an object containing a body attribute that will be  
the file’s content. 

Furthermore, there are many optional attributes such as 
file encoding. The interface APIRoute gives an overview of all 
implemented properties. 

Template-Version:  
10-CC2021

11We Are Developers ǀ Summer 2023

WEB FRAMEWORK

2315312574524313862.idd   11 02.06.2023   14:58:09

specifically formatted filenames, consisting of square- 
bracket-wrapped sections. They can either catch exactly 
one subsection of the URL or be nested, essentially  
catching the whole tail of the URL. Without rest parame-
ters, the dynamic routing only captures individual blocks 
separated by slashes (Listing 4).

The very idea of dynamic routing essentially goes against 
Astro’s core principle: generation at build time. Therefore, all 
dynamic routes must export a getStaticPaths() function 
that returns an array of objects with a params property each. 
Those params then contain the term from the filename’s 
square bracket blocks. For example, a file [authorName].astro 
must have its static path function return an array, including  
objects like {params: {authorName: ‘Timo Zander’}. 
This is then used to give a name to the generated HTML file and 
its corresponding link. Also, there may be multiple blocks  
within a given filename. For example, a file under src/pages/
[lang]/[author]/[…slug].astro will look up a certain author’s post 
in a given language with the respective slug (or title). There-
fore, in the blog example, the src/pages/blog/[…slug].astro file 
needs to query the content collection and return all posts with 
their respective slugs in its getStaticPaths() function 
(Listing 5).

The shown file queries all blog posts and returns their slugs 
in its JavaScript head. The HTML body merely renders the 
blog posts’ contents. The values of the params key within  
getStaticPaths() are crucial for generating the route 
and HTML file. Using the props property, one can pass data 
that is needed for the eventual rendering. This data can be 
arbitrarily typed, including objects or arrays. It is then pos-
sible to access this data in the body of the page. Thus, Astro 
executes the getStaticPaths() function and then, while 
generating each individual file, provides the received props 
as context to the file. In this example, the whole post is  
passed to be then rendered in the corresponding BlogPost 
layout. The render()  function is a special feature of  
content collections. It transforms the content into HTML which 
is returned as a Content component, which can then be 
used in the Markup.

Fetching Dynamic Content 
Using APIs

Astro cannot just load and pre-generate file-based data.  
Instead, all the query APIs work equivalently with dynami-
cally fetched content. To illustrate that, an example will use 

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 202310

WEB FRAMEWORK

2315312574524313862.idd   10 02.06.2023   14:58:09

ib0223_000_mit_Anz.indd   10 05.06.23   10:32



the heise Developer RSS feed to load and list the five  
latest articles on the front page. This requires a change in 
the src/pages/index.astro file (Listing 6). Since JavaScript’s  
built-in capabilities to parse XML files are limited to the 
browser environment, the rss-parser package will come into 
play. Alternatively, other DOM parsers like jsdom would also 
work. The benefit of the RSS-specific package is that it  
nicely converts the data to typed objects, making it easier 
to work with them. It is important to remember that the 
JavaScript code is fully executed during build time. Adding 
a console.log() statement will not show up in the  
browser’s console but instead in the terminal that runs the 
dev command. Moreover, the framework allows for top-level 
awaits. This means that the global context is execut ed  
as an async function, enabling the usage of the await  
keyword. Again, this is not affecting the user but only the 
build tool, meaning that the Astro build could be slowed 
down if high-latency resources are fetched. Listing the  
fetched links as an unordered list is done using the JSX  
syntax. Due to the type safety of the RSS library, parsing the 
publication date requires an extra check: If the pubDate 
field is unde fined, the time will not be rendered. In practice, 
data might be fetched from a CMS, an API or a combination 

of many data sources. Therefore, Astro proves flexible  
to adapt to any given environment. The documentation  
provides a guide for the most common Content Manage-
ment System (CMS) software options and how to integrate 
them with Astro. There are specific integration packages 
available for some that ease consuming the API of the CMS.

Generating Endpoints  
From Scratch

File-based routing not only supports dynamic HTML files, but 
also so-called endpoints. An endpoint can be any resource 
accessible from a web server, such as JSON files, XML site-
maps, images or assets of any kind. Adding the .js or .ts file 
ending to the desired name of the generated output will create 
an endpoint. For example, to generate an asset called  
sitemap.xml, the file src/pages/sitemap.xml.ts will be  
executed. Such files must export a get() function that  
returns an object containing a body attribute that will be  
the file’s content. 

Furthermore, there are many optional attributes such as 
file encoding. The interface APIRoute gives an overview of all 
implemented properties. 

Template-Version:  
10-CC2021

11We Are Developers ǀ Summer 2023

WEB FRAMEWORK

2315312574524313862.idd   11 02.06.2023   14:58:09

specifically formatted filenames, consisting of square- 
bracket-wrapped sections. They can either catch exactly 
one subsection of the URL or be nested, essentially  
catching the whole tail of the URL. Without rest parame-
ters, the dynamic routing only captures individual blocks 
separated by slashes (Listing 4).

The very idea of dynamic routing essentially goes against 
Astro’s core principle: generation at build time. Therefore, all 
dynamic routes must export a getStaticPaths() function 
that returns an array of objects with a params property each. 
Those params then contain the term from the filename’s 
square bracket blocks. For example, a file [authorName].astro 
must have its static path function return an array, including  
objects like {params: {authorName: ‘Timo Zander’}. 
This is then used to give a name to the generated HTML file and 
its corresponding link. Also, there may be multiple blocks  
within a given filename. For example, a file under src/pages/
[lang]/[author]/[…slug].astro will look up a certain author’s post 
in a given language with the respective slug (or title). There-
fore, in the blog example, the src/pages/blog/[…slug].astro file 
needs to query the content collection and return all posts with 
their respective slugs in its getStaticPaths() function 
(Listing 5).

The shown file queries all blog posts and returns their slugs 
in its JavaScript head. The HTML body merely renders the 
blog posts’ contents. The values of the params key within  
getStaticPaths() are crucial for generating the route 
and HTML file. Using the props property, one can pass data 
that is needed for the eventual rendering. This data can be 
arbitrarily typed, including objects or arrays. It is then pos-
sible to access this data in the body of the page. Thus, Astro 
executes the getStaticPaths() function and then, while 
generating each individual file, provides the received props 
as context to the file. In this example, the whole post is  
passed to be then rendered in the corresponding BlogPost 
layout. The render()  function is a special feature of  
content collections. It transforms the content into HTML which 
is returned as a Content component, which can then be 
used in the Markup.

Fetching Dynamic Content 
Using APIs

Astro cannot just load and pre-generate file-based data.  
Instead, all the query APIs work equivalently with dynami-
cally fetched content. To illustrate that, an example will use 

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 202310

WEB FRAMEWORK

2315312574524313862.idd   10 02.06.2023   14:58:09

ib0223_000_mit_Anz.indd   11 05.06.23   10:32



As an example, one can add the logo of Astro to the  
footer of the blog. Since this is a png file, a new file like  
astro-logo.png.ts will then fetch the logo from the official  
Astro press kit (Listing 7). Referencing this in the Footer  

component does not require any special syntax (Listing 8). 
The possibilities that this feature offers are plentiful. Assets 
could be fetched immediately from cloud storage instead of 
being manually downloaded and bundled during the build. 
APIs could be queried for their current versions during  
compile time to generate a JSON file with a version overview. 
Therefore, Astro can cover many responsibilities traditionally 
fulfilled by build systems.

The Island Architecture:  
Embedding Client-side JavaScript

Some features simply require JavaScript instead of static 
HTML only. Astro’s island architecture allows achieving this 
without losing much performance. The given blog requires 
client-side scripts to allow the user to switch between light 
and dark modes. Since dark mode styling is a deep topic in 
itself, the example will only implement a rudimentary  
version of a well-styled dark mode.

For one thing, the CSS code needs to implement a  
specific behavior for the dark mode. In this case, a dark class 
is added to the body whenever the dark mode is needed. To 
allow the user to switch between the two modes, a client-
side component is placed inside the footer (Listing 9).

The JavaScript code first ensures that the dark class is  
correctly initialized. Specifically, if the user’s browser has 
dark mode set as the standard option, it should respect that. 

Listing 6: Modified index.astro file, loading an RSS feed

---
import Parser from "rss-parser";

const parser = new Parser();
const feed = await parser.parseURL('https://www.heise.de/developer/rss/news.
rdf');

const feedItemsToShow = feed.items.slice(0, 5);
---
<!-- ... -->
<h3>Recommended reads by {feed.title}</h3>
<ul>
{
 feedItemsToShow.map((item) => (
 <li>
  <a href={item.link} target="_blank">
  {item.title}
  </a>

  {item.pubDate && (
  <time datetime={item.pubDate}>
   {new Date(item.pubDate).toLocaleDateString("en-us")}
  </time>
  )}
 </li>
 ))
}
</ul>
<!-- ... --> 
 

Listing 7: Dynamically generating an image asset with the file 
astro-logo.png.ts

export async function get() {
 const response = await fetch("https://astro.build/assets/press/full-
logo-light.png");
 const buffer = Buffer.from(await response.arrayBuffer());
 return {
  body: buffer,
  encoding: 'binary',
 };
} 

Listing 8: Referencing a dynamically generated image as if it 
were a static file

<footer>
  Powered by <img
    src="/astro-logo.png"
    alt="Astro"
  />
</footer>
<style>
footer img {
  display: inline;
  height: 20px;
  vertical-align: middle;
}
</style> 
 

Listing 9: Dark mode toggle component to switch  
between light and dark mode

<button class="dark-mode-switch">Dark</button>

<script>
  const darkModeSwitch = document.querySelector(".dark-mode-switch")!!;

  document.body.classList.toggle(
    "dark",
    window.matchMedia &&
      window.matchMedia("(prefers-color-scheme: dark)").matches
  );

  function updateDarkModeSwitch() {
    if (document.body.classList.contains("dark")) {
      darkModeSwitch.textContent = "Light mode";
    } else {
      darkModeSwitch.textContent = "Dark mode";
    }
  }

  if (darkModeSwitch) {
    darkModeSwitch.addEventListener("click", function () {
      document.body.classList.toggle("dark");
      updateDarkModeSwitch();
    });
  }

  updateDarkModeSwitch();
</script> 
 

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 202312

WEB FRAMEWORK

2315312574524313862.idd   12 02.06.2023   14:58:09



The remaining code makes sure that every click on the  
button either adds or removes the dark class and updates the 
button’s text. 

In practice, client-side components can be more com-
plicated, leveraging the power of UI frameworks or  
embedding pre-existing components from the ecosystems 
of React, Vue or Svelte.

Continuous Deployment  
Is Key

Astro’s focus on build-time generation makes it a prime  
candidate for automated deployments. When external data 
is fetched, like the RSS feed before, it is crucial to regularly 
re-build and re-deploy the application. In static mode, the 
build output only consists of HTML, CSS, and optionally some 
JavaScript files. Webpage deployment then only requires 
uploading the build output onto any web server. Therefore, 
doing this frequently does not come with any notable cost or 
overhead, especially not when a CI tool takes care of the task. 
The official documentation offers an overview of possible 
hosting options, some of which come with Astro-specific  
integration to facilitate the setup. In principle, any web  
hosting offering is compatible with Astro (at least in static 
mode), as there are no specific requirements.

With server-side rendering, deploying requires an addi-
tional adapter that provides a runtime for the rendering  
engine, which typically can be any Node.js or Deno server. 
The realm of server-rendered Astro and its specifics, though, 
would go beyond the scope of this article. 

Embracing Change

At first glance, Astro might look like yet another JavaScript 
framework. When taking a closer look, it seems like an overly 
hyped time travel to the 2010s when having static web  
pages was the norm. What those judgements miss, however, 
is how web development has changed. The surge of  
JavaScript-heavy apps has come with an improvement in  
developer experience and created an according ecosystem. 
Astro does not try to fight this movement but embraces it: Due 
to its frictionless integration with whatever frontend framework, 
CSS preprocessor or backend a developer might already be 
familiar with, it offers a low barrier to building performant web 
pages without introducing numerous abstraction-heavy con-
cepts as other frameworks do. Therefore, it is worth a look for 
anyone with the intent to (re-)build a content-heavy website 
that could use an extra  performance boost.  (mai)

Sources
All sources for this article: ix.de/zwet

Timo Zander

studied Applied Mathematics and 
Computer Science and works as a  
software developer. He is interested in 
open source, the JavaScript universe 
and emerging technologies. 

Template-Version:  
10-CC2021

13We Are Developers ǀ Summer 2023

WEB FRAMEWORK

2315312574524313862.idd   13 02.06.2023   14:58:09

ib0223_000_mit_Anz.indd   13 05.06.23   10:33



T he Rust programming language has been the most  
beloved in the annual Stack Overflow developer  
survey for seven years in a row. Not only do people 

love it, but it is also gaining traction in the industry, with large 
companies like Microsoft, AWS, and Google betting heavily 
on the unique properties of Rust. What makes it so popular 
among programmers worldwide?

A Modern Programming Language

Rust was created by Graydon Hoare at Mozilla in the early 
2010s as part of their experimental browser platform Servo. 
The underlying goal of Rust was to allow developers to create 
new browser features without having to deal with all the  
baggage and memory allocation problems that C and C++ 
carried. Similar to the original idea of the programming  
language Go, Rust was intended to create fast software that  
was fun to write. It draws influences from many other  
programming languages. While the syntax is very C-like, there 
are traces of functional programming languages as well, espe-
cially OCaml, in which the original Rust compiler was  
written. This makes Rust a modern language that has the up-
per hand over other programming languages in several ways.

For example, Listing 1 shows a Rust function that calcu-
lates the score of a word in a game of Scrabble. It is as  
readable as equivalent Python code but contains convenience 
features like expressions. They enable having a match state-
ment just next to the addition of two numbers. The match 
statement or expression itself allows for pattern matching 
across a set of valid values. In this case, it goes through  
all possible characters, and the match keyword requires a  
developer to take care of all possible values. Since some sets 

can include a plethora of values, a default case with the  
underscore sign can catch all remaining values. It indicates 
that in all other variations, the return value will be 0. 

Understanding why companies in Big Tech are using Rust 
requires a closer look at three crucial features:

• Memory safety without garbage collection
• Zero-cost abstractions
• Fearless concurrency

Memory Safety Without Garbage  
Collection

For decades, the most widely used programming languages 
were divided into two camps: On the one hand, developers 
could write software in programming languages with  
managed memory allocations, such as Python, Java, or Java-
Script.  On the other hand, developers could choose manual 
memory management like in C or C++, which allowed for 
highly performant software because there was no need for a 
runtime to deal with garbage collection.

Rust follows a different strategy: It relies on compile-time 
memory allocations based on a strict ruleset that developers 
must follow. This is more effort to learn, but creates 100  
percent memory-safe applications. Scenarios like use after 
free, double free, or buffer overreads and overwrites create 
software vulnerabilities that are easy to exploit. Both Micrsoft 
and Google found out that in Windows and the Chrome pro-
ject, respectively, 70 percent of all severe security bugs were 
in fact memory issues (all sources for this article are available 
here: ix.de/z64k). As of December 2022, 20 percent of all  
native code of Android is written in Rust, and to this date, there 
have been zero memory safety issues in Android’s Rust code.

Rust achieves memory safety through its “ownership and 
borrowing” system. Its fundamental principle is that there can 
be only one owner of data. When a value is assigned to a  

Metadaten-Schlagwort: Rust Introduction
Metadaten-Rubrik: Praxis
Praxis

Metadaten-Ausgabennummer: 2
Metadaten-Ausgabejahr: 2023
Metadaten-Ausgabennummer: 

In a Nutshell

 > Rust provides a unique, modern syntax for  
elegant code that includes traits to provide abstractions 
without overhead.
 > It introduces the ownership memory model to ensure  
optimized memory management at compile time.
 > Examples show how it uses both zero cost abstractions 
and ownership to prevent data races.

The programming language Rust  
has been on the rise for several years. 
This article dives into the reasons,  
demonstrates Rust's unique capabili-
ties and puts them into perspective.

Stefan Baumgartner

> Rust for Curious  
Developers

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 202314

2315312580317667319.idd   14 02.06.2023   14:58:24



variable, this variable becomes the owner. When the owner 
goes out of scope, memory is freed. Ownership can be trans-
ferred, though. The example in Listing 2 shows a typical  
scenario that would not pose a problem in a programming  
language like Java or JavaScript but causes compile errors in 
Rust. The moment the variable other_numbers is assigned 
to the value of numbers, the variable numbers no longer has 
a value. other_numbers owns the data, and the compiler 
will not allow developers to use the original binding anymore. 
The good thing: The Rust compiler clearly informs  
developers about what has happened and usually also  
provides mitigations. Oftentimes, granting multiple access 
to the same data is necessary. Therefore, Rust introduces the 
concept of borrowing data: Developers can create shared  
references that point to the same data, while the original  
binding remains the owner (Listing 3). The ampersand (&) is 
part of the type. It shows developers exactly what the  
software expects, for example, when they ask for shared  
references in function signatures. The Rust compiler then 
checks whether the bindings that own the data live long 
enough and do not go out of scope before the references do. 
If a reference is used after the owner is dropped, Rust will 
not let the code compile.

Listing 2: One value, two variables pointing to it. This example 
will not compile.

fn main() {
    let numbers = vec![1, 2, 3, 4];
    let other_numbers = numbers;
    println!("{:?}", numbers);
//                   ^^^^^^^
// Error: borrow of moved value: `numbers`
}

Listing 1: Calculating a Scrabble score

pub fn score(word: &str) -> u64 {
    let mut score = 0;
    for ch in word.to_lowercase().chars() {
        score = score + match ch {
            'a' | 'e' | 'i' | 'o' | 'u' | 'l' | 'n' | 'r' | 's' | 't' => 1,
            'd' | 'g' => 2,
            'b' | 'c' | 'm' | 'p' => 3,
            'f' | 'h' | 'v' | 'w' | 'y' => 4,
            'k' => 5,
            'j' | 'x' => 8,
            'q' | 'z' => 10,
            _ => 0
        }
    }
    score
}

Listing 3: An example of data borrowing 

fn main() {
    let numbers = vec![1, 2, 3, 4];
    let other_numbers = &numbers;
    println!("{:?}", numbers);
}

Template-Version:  
10-CC2021

15We Are Developers ǀ Summer 2023

2315312580317667319.idd   15 02.06.2023   14:58:24

variable, this variable becomes the owner. When the owner 
goes out of scope, memory is freed. Ownership can be trans-
ferred, though. The example in Listing 2 shows a typical  
scenario that would not pose a problem in a programming  
language like Java or JavaScript but causes compile errors in 
Rust. The moment the variable other_numbers is assigned 
to the value of numbers, the variable numbers no longer has 
a value. other_numbers owns the data, and the compiler 
will not allow developers to use the original binding anymore. 
The good thing: The Rust compiler clearly informs  
developers about what has happened and usually also  
provides mitigations. Oftentimes, granting multiple access 
to the same data is necessary. Therefore, Rust introduces the 
concept of borrowing data: Developers can create shared  
references that point to the same data, while the original  
binding remains the owner (Listing 3). The ampersand (&) is 
part of the type. It shows developers exactly what the  
software expects, for example, when they ask for shared  
references in function signatures. The Rust compiler then 
checks whether the bindings that own the data live long 
enough and do not go out of scope before the references do. 
If a reference is used after the owner is dropped, Rust will 
not let the code compile.

Listing 2: One value, two variables pointing to it. This example 
will not compile.

fn main() {
    let numbers = vec![1, 2, 3, 4];
    let other_numbers = numbers;
    println!("{:?}", numbers);
//                   ^^^^^^^
// Error: borrow of moved value: `numbers`
}

Listing 1: Calculating a Scrabble score

pub fn score(word: &str) -> u64 {
    let mut score = 0;
    for ch in word.to_lowercase().chars() {
        score = score + match ch {
            'a' | 'e' | 'i' | 'o' | 'u' | 'l' | 'n' | 'r' | 's' | 't' => 1,
            'd' | 'g' => 2,
            'b' | 'c' | 'm' | 'p' => 3,
            'f' | 'h' | 'v' | 'w' | 'y' => 4,
            'k' => 5,
            'j' | 'x' => 8,
            'q' | 'z' => 10,
            _ => 0
        }
    }
    score
}

Listing 3: An example of data borrowing 

fn main() {
    let numbers = vec![1, 2, 3, 4];
    let other_numbers = &numbers;
    println!("{:?}", numbers);
}

Template-Version:  
10-CC2021

15We Are Developers ǀ Summer 2023

2315312580317667319.idd   15 02.06.2023   14:58:24

ib0223_000_mit_Anz.indd   15 05.06.23   10:36



To mutate data, developers must declare a binding as  
mutable. Additionally, they must create mutable references 
if other parts of the code should change the owner’s data  
(Listing 4). There can be multiple shared references, but only 
one mutable reference. Also, if the mutable reference is used, 
all shared references become invalid. This ensures that no 
pointer points to data that might become invalid, for exam-
ple, if the vector shrinks or if the program needs to reallocate. 

The most important aspect of ownership and borrowing is 
that what is happening in the code becomes obvious. The  
types show developers what to expect, and the compiler  
understands how memory must be allocated. No matter how 
a Rust program is structured, the ownership and borrowing 
rules provide substantial information about the intricacies  
of the bindings. The chance of running into memory  
problems due to a lack of knowledge about the codebase is 
eliminated.

Abstraction Without Overhead

One of Rust’s mantras is to allow abstractions without over-
head. Rust achieves this goal by introducing traits. Traits are 
similar to interfaces in how they define and abstract shared 
behavior across types. Implementing certain traits on types 
makes them compatible with the broader ecosystem. Listing 
5 shows an implementation for Fibonacci numbers in the  

128-bit wide unsigned integer type. The struct stores  
a current  and next  number, but the calculation of  
Fibonacci numbers is implemented using an Iterator trait. 
Developers must define the associated type Item to explain 
which results to expect and then calculate the new number 
with every call to next.

The next method yields an Option, which is an enum 
containing two possible values. It can either have some  
value or no value (None). The result is one of the two  
variants, and Rust requires developers to take care of both. 
Either through the match operation or through built-in  
mechanisms like the iterator, where None is a sign to stop 
iterating. This makes iterators compatible with for loops. A 
for loop calls the next method until the method yields None. 
Developers may just say, “iterate over this collection.” The 
method checked_add prevents overflow. It also returns an  
Option, and this is where the question mark operator comes 
in. It allows developers to make their code much more  
concise, as the “bad” case—None—will be returned immedi-
ately, and the “good” case—Some—will be unpacked. This  

Listing 5: Creating Fibonacci numbers by implementing the 
Iterator trait and using checked_adds to ensure values can still 
be created

struct Fibonacci {
    curr: u128,
    next: u128,
}

impl Iterator for Fibonacci {
    type Item = u128;

    fn next(&mut self) -> Option<Self::Item> {
        let new_next = self.curr.checked_add(self.next)?;
        self.curr = self.next;
        self.next = new_next;
        Some(self.curr)
    }
}

Listing 4: Mutable access to numbers to change the data

fn append(vec: &mut Vec<u32>) {
    vec.push(5);
}

fn main() {
    let mut numbers = vec![1, 2, 3, 4];
    append(&mut numbers);
    println!("{:?}", numbers);
}

Template-Version:  
10-CC2021

17We Are Developers ǀ Summer 2023

2315312580317667319.idd   17 02.06.2023   14:58:24

ib0223_000_mit_Anz.indd   16 05.06.23   11:31



To mutate data, developers must declare a binding as  
mutable. Additionally, they must create mutable references 
if other parts of the code should change the owner’s data  
(Listing 4). There can be multiple shared references, but only 
one mutable reference. Also, if the mutable reference is used, 
all shared references become invalid. This ensures that no 
pointer points to data that might become invalid, for exam-
ple, if the vector shrinks or if the program needs to reallocate. 

The most important aspect of ownership and borrowing is 
that what is happening in the code becomes obvious. The  
types show developers what to expect, and the compiler  
understands how memory must be allocated. No matter how 
a Rust program is structured, the ownership and borrowing 
rules provide substantial information about the intricacies  
of the bindings. The chance of running into memory  
problems due to a lack of knowledge about the codebase is 
eliminated.

Abstraction Without Overhead

One of Rust’s mantras is to allow abstractions without over-
head. Rust achieves this goal by introducing traits. Traits are 
similar to interfaces in how they define and abstract shared 
behavior across types. Implementing certain traits on types 
makes them compatible with the broader ecosystem. Listing 
5 shows an implementation for Fibonacci numbers in the  

128-bit wide unsigned integer type. The struct stores  
a current  and next  number, but the calculation of  
Fibonacci numbers is implemented using an Iterator trait. 
Developers must define the associated type Item to explain 
which results to expect and then calculate the new number 
with every call to next.

The next method yields an Option, which is an enum 
containing two possible values. It can either have some  
value or no value (None). The result is one of the two  
variants, and Rust requires developers to take care of both. 
Either through the match operation or through built-in  
mechanisms like the iterator, where None is a sign to stop 
iterating. This makes iterators compatible with for loops. A 
for loop calls the next method until the method yields None. 
Developers may just say, “iterate over this collection.” The 
method checked_add prevents overflow. It also returns an  
Option, and this is where the question mark operator comes 
in. It allows developers to make their code much more  
concise, as the “bad” case—None—will be returned immedi-
ately, and the “good” case—Some—will be unpacked. This  

Listing 5: Creating Fibonacci numbers by implementing the 
Iterator trait and using checked_adds to ensure values can still 
be created

struct Fibonacci {
    curr: u128,
    next: u128,
}

impl Iterator for Fibonacci {
    type Item = u128;

    fn next(&mut self) -> Option<Self::Item> {
        let new_next = self.curr.checked_add(self.next)?;
        self.curr = self.next;
        self.next = new_next;
        Some(self.curr)
    }
}

Listing 4: Mutable access to numbers to change the data

fn append(vec: &mut Vec<u32>) {
    vec.push(5);
}

fn main() {
    let mut numbers = vec![1, 2, 3, 4];
    append(&mut numbers);
    println!("{:?}", numbers);
}

Template-Version:  
10-CC2021

17We Are Developers ǀ Summer 2023

2315312580317667319.idd   17 02.06.2023   14:58:24

ib0223_000_mit_Anz.indd   17 05.06.23   10:39



ib0223_000_mit_Anz.indd   18 01.06.23   07:38



operation is known as “bubbling up” an Option. The Rust  
compiler removes all abstractions and creates the most  
optimized code possible. If possible in a given scenario, it will 
execute the Fibonacci iterator at compile time and simply 
write the result into the binary.

Fearless Concurrency

Rust’s ownership and borrowing system, as well as the  
abstractions in the form of traits and types, prevent encoun-
tering data races. Preconditions for data races are two or 
more pointers that access the same data simultaneously, but 
with one of the pointers having write access. If a program has 
no mechanism for synchronizing access to data, it is likely to 
show undefined behavior. In concurrent scenarios, multiple 
threads often access the same data. Listing 6 increments the 
same memory across multiple threads. A mutex ensures  
exclusive access to this value. Ownership requires devel opers 
to make sure that every thread can own a reference to the 
same memory. By adding an atomic reference counter, or  
Arc, multiple references can point to the same data while  
allowing for thread-safe access. The move keyword gives  
ownership of all required variables to the thread closure.

Bottom Line

Those were just three aspects of Rust that excite developers 
around the world. There is much more to love, though. For 
example, Cargo and crates.io provide excellent tooling and  
a rich ecosystem of third-party libraries, similar to what  
npm offers in the JavaScript world, and the Rust syntax is  
optimized for ergonomics. If developers go back to other  
programming languages, they will miss the effect that a simple 
drop of a semicolon has on their programming. And, last but 
not least, there is a community that cares for inclusion,  
empowerment, and enablement. (mai)

Sources
Links for this article are available here: ix.de/z64k

Listing 6: Using an atomic reference counter (or Arc) allows 
multiple access to the same data.

let counter = Arc::new(Mutex::new(0));
let mut handles = vec![];

for _ in 0..5 {
    let counter = Arc::clone(&counter);
    let handle = thread::spawn(move || {
        let mut num = counter.lock().unwrap();
        *num += 1;
    });
    handles.push(handle);
}

Stefan Baumgartner

is a software architect and  
developer based in Austria.  
He helps organizations with Rust and 
TypeScript under oida.dev. Stefan  

is the author of “TypeScript in 50  
Lessons” (Smashing Magazine, 2020) and “The  
TypeScript Cookbook” (O'Reilly, 2023). In his spare 
time, he organizes ScriptConf and Rust Linz. Stefan  
enjoys Italian food, Belgian beer, and British  
vinyl records.

Template-Version:  
10-CC2021

19We Are Developers ǀ Summer 2023

RUST INTRODUCTION

2315312580317667319.idd   19 02.06.2023   14:58:24

ib0223_000_mit_Anz.indd   19 06.06.23   10:10



Organizations rely on high-performing developer teams 
to react quickly to changing market conditions and 
deliver new products and features to consumers  

fast er. Key characteristics of such teams are that they are 
small, self-sufficient, and can perform most or all of their 
work independently from other teams, as well as make 
most or all decisions on their own. Their flexibil ity and  
development speed, though, must be balanced against  
the need to build well-architected services. This includes 
being secure, compliant with company policies, and  
following best practices for operational excellence and  
reliability. 

Developers commonly experience the adherence to com-
pany requirements as a slowdown of their development  
activities, while the demand for non-functional requirements  
rises. At the same time, cognitive load for developers has  
increased as they need to deal with complex technology 
stacks to build and run cloud-native applications. To bridge 
the gap, companies can employ platform engineering, which 
is the discipline of simplifying software delivery for product 
teams through developer enablement and self-service, in  
the form of an internal developer platform (IDP), hereafter 
referred to as “developer platform.” This article explains how 
platform engineering evolved from the DevOps movement 
and what types of developer platforms exist. Going further, 
it introduces the decentra lized developer platform as an  
advanced type that favors organizational scalability, self- 
service and ownership by the involved developer teams.  
Finally, it provides an overview of the guiding principles and 
required technical capabilities of a decentralized developer 
platform, which can act as a guide for its implementation.

The Origin of Developer Platforms

Companies have been building internal developer  
platforms for years, even since before the term was  
coined, and the concept is known throughout the IT indus-
try. For example, Amazon Web Services (AWS) has been  
specifically discussing it in the scope of building platforms  
in the cloud since 2019, aptly calling it cloud platform engi-
neering (all links for this article: ix.de/z66z). AWS describes 
it as codifying differences between stock AWS service  
configurations and enterprise standards, packaged and  
continuously improved as self-service deployable products 
available to internal customers.

The origins of platform engineering can be traced back to 
the DevOps methodology. The “you build it, you run it”  
paradigm formulated by AWS CTO Werner Vogels in 2006  
urged devel opers to get into contact with the day-to-day  
operations of their software and, ultimately, their customers. 
This led to a movement which puts more responsibility into 
the hands of developers to own the lifecycle of their applica-
tions—from writing the code to deployment in production.  
At the same time, the complexity of applications and tech-
nologies to run them increased as well: For example, develop-
ment teams started to break monoliths down into microser-
vices, running them on distributed compute platforms like 
Kubernetes, with the infrastructure and deployments defined 
as code. In addition, cloud services and software as a  
service (SaaS) were adopted to reduce undifferentiated heavy 
lifting and improve the user experience through reduced  
latency, global availability, and additional features. 

Metadaten-Schlagwort: Development Infrastructure
Metadaten-Rubrik: Praxis
Praxis

Metadaten-Ausgabennummer: 2
Metadaten-Ausgabejahr: 2023
Metadaten-Ausgabennummer: 

In a Nutshell
 > The increasing complexity of cloud-native tech stacks is 
leading to high cognitive load for developers.
 > Internal developer platforms provide tools, services, and 
artifacts to reduce complexity for developers and make it 
easier for them to build well-architected applications.
 > The decentralized developer platform is a particular  
variant where mature developer teams consume curated 
patterns for deploying and operating applications in their 
own environments.

An internal developer platform  
can simplify software delivery for 
devel opment teams. In the shape of  
a decentralized developer platform,  
it can provide them with a high degree 
of ownership over managing their  
infrastructure, thereby increasing  
flexibility and agility.   

Robert Hoffmann

> Running With  
a Decentralized  
Developer Platform

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 202320

2315608384773939435.idd   20 05.06.2023   10:39:12



Adopting these technologies and building cloud-native  
applications helped teams to reduce the time to release soft-
ware, and address the growing expectations of users. As a  
tradeoff, the cognitive load for integrating and running appli-
cations increased (Figure 1). Platform engineering is reducing 
the cognitive load by providing tools, services and artifacts so 
that devel opers can focus on product delivery, while reducing  
lead time and improving the quality of their applications. The 
exact definition of quality depends on the context, but a  
common way to frame it is the Well-Architected Framework 
by AWS, which provides guidance for designing and operating 
secure and efficient applications through six pillars (Figure 2).

A highly automated self-service developer platform is ben-
eficial to both the platform teams that create and maintain the 
platform as well as to the users of the platform, the devel-
opers. Platform teams spend less time with onboarding ac-
tivities and tickets, and have more time to focus on the devel-
oper experience of using the platform. Developers can request 

resources and services on demand and experience reduced 
cognitive load, which helps them focus on product delivery. 

Moving From Centralized  
To Decentralized Operational Models

An organization offers one or multiple operational models for 
building and running applications, and this model informs the 

>> Cognitive load for developers has increased  
over the years as new technologies and  

methodologies have been invented and subsequently  
adopted in organizations (Figure 1).

So
ur

ce
: A

m
az

on
 W

eb
 S

er
vi

ce
s

Template-Version:  
10-CC2021

21We Are Developers ǀ Summer 2023

DEVELOPMENT INFRASTRUCTURE

2315608384773939435.idd   21 05.06.2023   10:39:13

ib0223_000_mit_Anz.indd   21 05.06.23   10:57



properties of the developer plat-
form(s). A key property that defines 
an operational model is the alloca-
tion of the shared responsibility be-
tween developer and platform teams:

• In a centralized provisioning  
model, the responsibility for archi-
tecting, deploying, and managing 
infrastructure falls primarily on a 
centralized platform engineering 
team. The request model is often 
based on tickets that are sent to 
the platform team, and the devel-
opers wait for the provisioning of 
resources on their behalf. 

• The platform-enabled golden path 
model is an approach that allows 
for developers to have some form 
of customization while maintaining 
consistency by following a set of standards. In this model, 
platform engineers clearly lay out “preferred” standards 
with sane defaults, guard rails, and good practices based 
on common architectures that development teams can use 
as-is—the “golden path.” In order to grant developers more 
freedom and self-service, platform teams offer services 
with a narrow interface that allow self-service configura-
tion and application deployment. Typically, this manifests 
as one or many managed container clusters, where the 
infrastructure is owned and maintained by the platform 
teams, and developer teams can use the cluster’s API to 
run containers. 

• In the embedded DevOps model, more responsibilities shift 
to the developer teams, as shared or dedicated DevOps  
engineers become team members. The DevOps engineers 
adhere to central platform standards and implement them 
as infrastructure owned by the individual teams, adding 
customizations if necessary. 

Decentralized DevOps

Going even further, a decentralized DevOps model gives  
development teams full ownership and responsibility for  
defining and managing their infrastructure. In large compa-
nies, the number of developers can quickly outweigh the num-
ber of platform engineers and DevOps engineers, so teams 
need to work as self-sufficiently as possible. Organizations 
adopt decentralized DevOps as an advanced operational  
model to realize the “you build it, you run it” mindset. The 

model offers great agility and flexibility to developer teams, 
but also requires a cultural shift in the organization because 
these teams now own the entire stack. Practicing decentral-
ized DevOps is a question of preference and maturity. As a 
prerequisite, developer and platform teams need to agree  
on supporting this model and shifting responsibility and  
privileges to developers. This is only possible with a high  
maturity level of culture and systems. In practice, teams will 
choose an operational model from a set of options that are 
available in their organization.

In the decentralized DevOps model, platform teams  
continue to be responsible for implementing centralized  
governance in the form of guard rails and boundaries. This 
reduces the chance that developer teams get lost in their 
newly found freedom. These centralized governance func-
tions validate configurations, enforce compliance, and de-
tect security vulnerabilities. In a strict definition of decen-
tral ized DevOps, the influence of platform teams ends with 
implementing governance functions, and developers have 
full autonomy for everything else. 

Decentralized Developer Platform

In practice, organizations might find that full developer  
autonomy is too extreme, and that there are tangible bene-
fits of collaborating more closely with platform teams  
(Figure 3). Concretely, developer teams would still retain most 
of their autonomy, but benefit from platform teams acting as 
cultivators of tech stack consistency, commonly used con-
figuration patterns, best practices, overall developer expe-

>> Internal developer platforms offer various types of artifacts and services that 
help developer teams to build well-architected applications with reduced cognitive 
load (Figure 2).

So
ur

ce
: A

m
az

on
 W

eb
 S

er
vi

ce
s 

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 202322

DEVELOPMENT INFRASTRUCTURE

2315608384773939435.idd   22 05.06.2023   10:39:13



rience and governance functions. At  
a minimum, governance includes  
security and compliance, while more 
mature organizations additionally  
implement API and data contract  
enforcement to simplify data exchange 
between different teams. 

One way this work would manifest 
is in a repository of deployable appli-
cation patterns, which are configura-
tion templates that developer teams 
use to deploy services with sane  
defaults and built-in best practices. 
These patterns are a form of golden 
path, with the distinction that they are 
treated like internal open-source code. 
This means that developer teams can 
inspect, configure, and even arbitrarily 
customize (“fork”) them. Platform teams 
would be the custodians for these pat-
terns, ensuring their maintenance and improvement. This is 
the core idea of the decentralized developer platform, which 
slightly modifies the operational model of decentralized 

DevOps to shift some influence back to the platform teams. 
As the name implies, it decentralizes a major part of the  
responsibility, ownership and corresponding infrastructure, 

>> Developer teams consume deployable application patterns in their own,  
dedicated environments. Platform teams act as the custodians of these  
patterns (Figure 3).

So
ur

ce
: A

m
az

on
 W

eb
 S

er
vi

ce
s

Template-Version:  
10-CC2021

23We Are Developers ǀ Summer 2023

DEVELOPMENT INFRASTRUCTURE

2315608384773939435.idd   23 05.06.2023   10:39:14

ib0223_000_mit_Anz.indd   23 05.06.23   10:58



moving it to the developer teams. Typically, this means that 
there is a physically or logically separated environment for 
each team in which their applications and infrastructure 
(services) run.

Decentralized infrastructure empowers developer teams 
to work efficiently, delivering customer-facing features with 
increased agility. By running applications and infrastruc-
ture independently, teams can make changes and upgrades 
on their own timeline, decoupling their roadmap planning 
from others. This approach minimizes outages and scaling 
issues by separating workloads, for example into multiple 
Kubernetes clusters.

Platform teams play a crucial role in a decentralized  
developer platform. They maintain necessary centralized  
services, implement governance functions for security and 
compliance, and collaborate with developers to build and 
maintain deployable application patterns. These patterns 
serve as abstractions, reducing cognitive load for developers 
and incorporating company policies and integrations.  
Shifting from operating services to composing managed  
services benefits platform teams, enabling them to respond 

quickly to new features and gather user feedback. For  
devel oper teams, the provided patterns offer flexibility and 
the ability to contribute changes back to the platform teams.

Collaboration between developer and platform teams to 
improve and scale the library of deployable application  
patterns can be fostered by adopting InnerSource (further 
information is available here: ix.de/z66z). This practice  
mirrors open source methodologies and promotes collabo-
ration in developing proprietary software.

Guiding Principles for a Decentralized 
Developer Platform

Having introduced the concept of a decentralized developer 
platform, the following shows a condensed North Star  
vision of how to produce and consume such a platform. A  
decentralized developer platform is developed and made 
available like an InnerSource product:

• Its offerings (sub-products) are versioned pieces of soft-
ware that platform teams evolve with the user community.

Contact

iX | heise Developer 
Postfach 61 04 07, 30604 Hannover; Karl-Wiechert-Allee 10,  
30625 Hannover, Germany
Phone: 0511 5352-387, fax: 0511 5352-361, e-mail: post@ix.de

 Publishers: Ansgar Heise

Editor-in-Chief: Dr. Oliver Diedrich (responsible for the text section)

Concept and Editorial Leadership: Maika Möbus (mai@ix.de) -589

Editor: Rainald Menge-Sonnentag (rme@ix.de) -884

Authors of this Issue:  
Stefan Baumgartner, Robert Hoffmann, Timo Zander

DTP Production:  
Lisa Hemmerling, Heise Medienwerk, Rostock

Proofreading and Final Correction:  
Maika Möbus

Cover Image:  
© Freepik; Montage: Lisa Hemmerling

Publishing House: 
Heise Medien GmbH & Co. KG,  
Postfach 61 04 07, 30604 Hannover; Karl-Wiechert-Allee 10, 30625 Hannover, Germany;  
phone: 0511 5352-0, fax: 0511 5352-129 

Managing Directors:  
Ansgar Heise, Beate Gerold

Members of the Executive Board:  
Jörg Mühle, Falko Ossmann

Advertising Director (responsible for the advertising section):  
Michael Hanke (-167),  
e-mail: michael.hanke@heise.de,  
www.heise.de/mediadaten/ix

Head of Sales and Marketing:  
André Lux (-299)

Printed by:  
Dierichs Druck + Media GmbH & Co. KG,  
Frankfurter Straße 168, 34121 Kassel, Germany

 
Despite thorough review by the editorial team, the publishing house cannot  
accept any liability for the correctness of the publications. No part of this publication  
may be distributed without the explicit written permission of the publishing house; 
this explicitly includes publication on websites.  

Printed in Germany 
© Copyright by Heise Medien GmbH & Co. KG

Advertisers  
Capgemini Deutschland GmbH München 2
Cariad SE Wolfsburg 27
DATEV eG Nürnberg 9
DLR Deutsches Zentrum 
für Luft- und Raumfahrt e.V. Weßling 15
HENSOLDT Sensors GmbH Ulm 21
Lauterbach GmbH Höhenkirchen-
 Siegertsbrunn 5

Red Hat Limited IRL-Cork 19
Rosen Technology and 
Research Center GmbH Lingen 11
Software Quality Lab GmbH. A-Linz 28
Syskron GmbH Wackersdorf 23
Universitätsklinikum Mannheim GmbH Mannheim 17
WIBU-SYSTEMS AG Karlsruhe 13
ZF Group Friedrichshafen 7

The page numbers printed here are not binding. Editorial reasons may make changes necessary. 

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 202324

DEVELOPMENT INFRASTRUCTURE

2315608384773939435.idd   24 05.06.2023   10:39:14



• They are accessible because they are well documented, 
come with tutorials, community events, open roadmaps, 
and bug reporting mechanisms.

• Users choose what products to provision in their environ-
ment, and the products will not change unless they upgrade 
or customize it.

Products mainly consist of deployable application patterns 
for common developer journeys, also referred to as golden 
paths:

• Deployable application patterns turn into resources (infra-
structure, services, workflows) in the developer team’s  
dedicated environments. Most resources are dedicated  
instances, so deployment is distributed, and centralization 
is kept at a minimum, mostly for governance functions.

• Resources are often implemented with ready-to-use SaaS 
and cloud services. The value-add comes through sane  
defaults and integration with the organization’s IT environ-
ment (e.g. single sign-on).

• A product is a transparent abstraction in that it will not lock 
away its implementation, because every abstraction will 
leak at some point. Products explain how they integrate  
resources.

• Products can be consumed in a self-service manner  
without requiring any human intervention.

Thus, the guiding principles of a decentralized developer  
platform are:

• Versioned
• Decentralized
• User-centered
• Customizable
• Transparent
• Self-service

Implementing a Decentralized  
Developer Platform

Implementing a decentralized developer platform requires 
a number of key technical capabilities (Figure 4) to enable 
two broad categories of use cases: collaboration (including 
publishing services and patterns) and consumption. Collab-
oration involves developers and platform engineers working 
together to extend and improve application patterns. The  
InnerSource Commons community provides knowledge for 
these use cases. This section focuses on consumption use 
cases, which include provisioning infrastructure for building, 

testing, deploying, and running services. Developers  
request one or more managed environments, which are the 
logical or physical containers to host their resources.

 Accessibility capabilities are optional but simplify the  
exploration, deployment, and interaction with deployable  
application patterns and underlying services. Examples  
include developer portals and CLIs that provide search,  
deployment automation, and documentation access. These 
interfaces can connect directly with delivery capabilities or 
be part of a deployment service. A deployment service, also 
known as an application delivery service or platform orches-
trator, simplifies the developer experience of using deploy-
able application patterns. First, a developer can choose a  
pattern and provide some additional configuration. The  
deployment service then orchestrates the underlying  
systems like code repositories, CI/CD pipelines and provision-
ing engines to deploy the pattern.

 The accessibility functions are backed by delivery capabil-
ities to enable self-service provisioning. In order to provision  
resources, developers apply GitOps, which is defining the 
infrastructure as code (IaC) and maintaining it in a Git  
repository. Then, provision ing engines turn the desired state 
into the deployment and composition of services. This  
process can be triggered by a CI/CD pipeline. Finally, gover-
nance functions ensure compliance and security. They scan 
environments for vulnerabilities and validate desired states 
against policies. Preventive and detective guard rails, such 
as role-based access control and privileged systems, protect 
against policy circumvention or disabling.

Key Decisions for Mapping  
Capabilities to Implementations

For each of the capabilities outlined above, it is possible to 
adopt one or more tools and services. The range to pick from 
depends on some key decisions:

1. How are managed services acquired? A common example 
is choosing a public cloud provider to have a broad set of 
services available.

2. What is the standard provisioning engine? Typical choices 
are Terraform, the native engine of the public cloud provi-
der, e.g. CloudFormation for Amazon Web Services (AWS), 
or the Kubernetes control plane.

3. The previous decisions typically provide information  
about what kind of governance solutions are employed. 
For example, cloud services tend to come with a native set 
of preventive and detective controls, while Kubernetes-
based environments are secured with policy engines like 
the Open Policy Agent. 

Template-Version:  
10-CC2021

25We Are Developers ǀ Summer 2023

DEVELOPMENT INFRASTRUCTURE

2315608384773939435.idd   25 05.06.2023   10:39:14



4. Next, it is possible to select a deployment service that  
supports the technology choices made in the previous 
steps. For example, if managed services are provided by 
AWS, a natural choice could be its native deployment  
service, AWS Proton. If the provisioning engine is Kuber-
netes, a common approach is using the open-source  
extension Crossplane, which can manage the lifecycle of 
resources like managed services. 

5. The choice for a developer portal and CLI might be pre-
determined by the selection of the deployment service.  
Alternatively, some companies opt for not offering such 
convenience tools, but instead adopt open-source  
products like Backstage (a platform for building developer 
portals) or build their own. Typically, these in-house  
tools provide scaffolding for multiple systems like code 
repositories and CI/CD pipelines.

Aligning Developer Platforms  
With Operational Models

Internal developer platforms help simplify software delivery 
for product teams through developer enablement and  
self-service. The allocation of responsibilities between  
developer and platform teams depends on the chosen  
operational model. If the organization is practicing decentral-
ized DevOps, the decentralized developer platform is a  
sensible choice to support that operational model. It lets  
developer teams consume deployable application patterns, 

which are versioned and cus-
tomizable software artifacts. 
Developer teams turn the  
patterns into infrastructure 
running in dedi cat ed environ-
ments that they own. Platform 
teams maintain the patterns 
but treat them like Inner-
Source products. Thus, devel-
oper teams can build infra-
structure and applications 
independently, while still be-
nefitting from codified, consis-
tent, and maintained best 
practices and company poli-
cies. Realizing a decen tralized 
developer platform requires 
suitable technologies, for 
example leveraging the AWS 
cloud for managed services 
and Kubernetes as the provi-

sioning engine. Building a proof-of-concept implementation 
of these capabilities can be a first step towards support ing a 
decentralized developer platform. Moreover, some of the 
tools and services can also power more centralized develop er 
platforms—if the chosen solutions feature a sophisticated  
access management, they enable distributing responsibil-
ities between developer and platform teams in multiple  
variations. This allows organizations to pick one or more  
operational models that best fit their particular culture.  (mai)

Sources

Links to the topics discussed in this article are available  
here: ix.de/z66z

Robert Hoffmann

is a Senior Solutions Architect at AWS. 
Previously, he worked for top smart 
device and telecommunication brands, 
pioneering cloud-native applications 

during the early days of Docker and Kubernetes. At 
AWS, he is supporting some of the world’s largest retail 
brands on their cloud journey. Robert is passionate  
about observability, infrastructure as code and devel-
oper productivity. You can find him discussing these 
topics at conferences and on Twitter (@robhoffmax).

>>  The technical capabilities of the decentralized developer platform include essential 
delivery capabilities and—optional, yet highly effective in improving the developer  
experience—accessibility capabilities (Figure 4).

Source: Amazon Web Services 

Template-Version:  
10-CC2021

We Are Developers ǀ Summer 202326

DEVELOPMENT INFRASTRUCTURE

2315608384773939435.idd   26 05.06.2023   10:39:14



ib0223_000_mit_Anz.indd   27 06.06.23   10:22



ib0223_000_mit_Anz.indd   28 01.06.23   07:38




